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The prototype spin-up problem between infinite flat plates treated by Greenspan 
& Howard (1963) is extended to include the presence of an imposed axial magnetic 
field. The fluid is homogeneous, viscous, and electrically conducting. The resulting 
boundary initial-value problem is solved to first order in Rossby number by 
Laplace transform techniques. In  spite of the linearization the complete hydro- 
magnetic interaction is preserved: currents affect the flow and the flow simul- 
taneously distorts the field. In  part 1, we analyze the impulsively started time 
dependent approach to a final steady Ekman-Hartmann boundary layer on 
a single insulating flat plate. The transient is found to consist of two diffusively 
growing boundary layers, inertial oscillations, and a weak Alfvdn wave front. 
In part 2, these one plate results are utilized in discussing spin-up between two 
infinite flat insulating plates. Two distinct and important hydromagnetic spin-up 
mechanisms are elucidated. In  all cases, the spin-up time is found to be shorter 
than in the corresponding non-magnetic problem. 

1. Introduction 
A conceptually simple problem, which has provided much valuable insight 

into the dynamics of homogeneous rotating fluids in recent years, is the so-called 
spin-up problem, In the simplest case it concerns the manner in which a con- 
tained fluid adjusts from one state of rigid body rotation to another (with the 
rotation axis fixed in direction). It has now been shown (Greenspan 1964, 1965, 
1968; Greenspan & Weinbaum 1965) that the essential dynamics for the general 
spin-up problem in an arbitrary container with finite (e.g. non-linear) change in 
angular speed can largely be understood by solving the much simpler prototype 
problem treated by Greenspan & Howard (1963). In their spin-up problem, the 
fluid is ‘contained ’ between two infinite flat parallel plates perpendicular to the 
rotation axis, and only an infinitesimal change in rotation speed is allowed so 
that the mathematical problem becomes linear. 

Clearly, extensions of this work are required before it can be applied directly 
to geophysical or astrophysical problems of interest. One such extension of 
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importance is to consider the effects of a stable density stratification as has been 
done by Pedlosky (1967). In  the present paper we study the prototype hydro- 
magnetic spin-up problem for a homogeneous fluid. The detailed motivation for, 
and application of, this work will not be given here, but it is worth mentioning 
that the slow westward drift of the geomagnetic field and the ‘solar spin-down 
problem’ (e.g. Howard, Moore & Spiegel 1967) both suggest the relevance of 
‘ spin-up problems ’ for electrically conducting fluids. Apart from this motivation, 
it will be seen that the idealized problem treated here is sufficiently rich in pheno- 
mena that it deserves attention for its own sake. 

More specifically, the ultimate aim here is to understand how a homogeneous, 
viscous electrically conducting fluid contained between two infinite, flat, parallel, 
insulating plates adjusts in time from one rigid body rotation to a slightly different 
collinear one, when an applied uniform magnetic field acts parallel to the rotation 
axis. It is believed that this highly idealized problem embraces many (though 
certainly not all) of the fundamental processes which must be crucial in the more 
complicated problems of physical interest. Relying heavily on the now well 
understood non-magnetic problem (Greenspan & Howard), it seems clear 
that three successive studies are required to ‘solve’ the stated problem. First, 
a knowledge of the hydromagnetic analogue of a steady Ekman boundary layer 
is required. Secondly, the establishment and transient dynamics of such a layer 
must be exposed. Finally, two such layers must be allowed to interact with each 
other and a non-dissipative core flow to produce spin-up. The first part of this 
programme is the subject of a recent paper by Gilman & Benton (1968), which 
will be briefly summarized next. The second and third steps above are the sub- 
jects of parts 1 and 2 of this paper, respectively. 

One of the two important hydromagnetic spin-up mechanisms, that will be 
elaborated on in part 2, owes its existence primarily to the interesting features of 
the steady Ekman-Hartmann boundary layer, discussed by Gilman & Benton. 
In  their work, a single infinite flat insulating plate rotates with angular speed 
R,, and the viscous electrically conducting fluid far from it rotates with slightly 
different speed Q, = Q,( 1 + e ) .  The unperturbed magnetic field is uniform and 
perpendicular to the plates. In the limits of vanishing and infinite magnetic field, 
the boundary layer reduces, respectively, to the classical Ekman layer and a 
rotating Hartmann layer. An MHD extension of von K h m h  radial similarity, 
together with an expansion in powers of the Rossby number E ,  leads to the exact 
axisymmetric solution. To first order in E ,  the impressed magnetic field has two 
important consequences. First, because of its Maxwell tension, the Ekman 
pumping by unbalanced centrifugal forces near the boundary produces a weaker 
radial motion than in the non-magnetic case; consequently, indirectly through 
mass continuity, Ekman suction (or blowing) is inhibited by the hydromagnetic 
body force (as it is also directly inhibited by buoyancy forces when the density 
is stably stratified, Barcilon 6 Pedlosky 1967). Secondly, the imposed vertical 
shear of the tangential velocity tips the applied axial magnetic field lines partially 
into the azimuthal direction; thus, an axial electric current (called the ‘ Hartmann 
current’) is induced, and it persists outside the boundary layer. It will be shown 
(in part 2) how this current can substitute for the inhibited Ekman suction 
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velocity in producing rapid hydromagnetic spin-up by an accelerating tangential 
electromagnetic body force. 

In  the present paper, part 1, we examine the impulsively started initial value 
problem for the transient approach to steady, linear, Ekman-Hartmann flow. 
As will be seen, this represents a non-trivial yet mathematically tractable exten- 
sion of ordinary Ekman theory with many fascinating features. Indeed, there are 
two diffusively growing boundary layers, highly persistent inertial oscillations, 
and an Alfvdn wave front, whose properties and interactions are studied by 
Laplace transform techniques. The mathematical formulation and simplification 
are given in $ 2  and the exact Laplace transform solution in $ 3. Section 4 deals 
with some limiting cases of interest for which the exact inversions are available, 
in particular, ordinary non-magnetic flow, the early and late time behaviour in 
general, and flow at zero magnetic Prandtl number. The physically interesting 
case of small non-vanishing magnetic Prandtl number is treated approximately 
in 5 5, and the results are summarized in $ 6. Part 2 of the paper, entitled Hydro- 
magnetic spin-up between inJinite flat, insulating plates, utilizes the results of 
part 1 to discuss both qualitatively and quantitatively how the spin-up process 
occurs and presents formulae for the spin-up time. 

2, Mathematical formulation 
We consider the following problem. Prior to time t = 0, a homogeneous, viscous, 

electrically conducting fluid and its boundary, the insulating half-space z < 0, 
are in rigid body co-rotation at  angular speed Q about the z axis. A uniform 
magnetic field, of strength B, is imposed parallel to the z axis. No electric currents 
flow in the basic state. At time t = 0, the boundary angular speed is impulsively 
accelerated to the value Q( 1 + B ) ,  and the applied field is not changed. The para- 
meter s, the Rossby number, is of small magnitude compared to 1;  for purposes 
of discussion, it is regarded as positive, so that the boundary has been spun-up; 
but, clearly, to first order ins, spin-down is simply a suitable 'reflexion' of spin-up. 

Mathematically, we need to' solve the fundamental MHD equations, which 
are written in an inertial co-ordinate system and rationalized MKS units 
(Shercliff 1965) as: 

(1) 

(2) 

(3) 

aV 1 
- + V( 4 ~ ' )  + (V x V) x v = - Vn + - (V x B) x B - VV x (V x v), 

aB 
- = V x (V x B) -hV x (V x B), 

V . V  = V.B = 0, 

where v, B, p = pn, p, p, v, h = and CT are respectively, velocity field, 
magnetic field, pressure, density, magnetic permeability, kinematic viscosity, 
resistivity and electrical conductivity. Suitable initial and boundary conditions, 
in cylindrical co-ordinates, are: 

for t > 0: at z = 0, v = r!2( 1 + s) 0, B is continuous, 

at PP 

at 

at t = 0: v = rQ0, B = B,&, (4) 

( 5 )  

36-2 

as z - + q  vu,+O, vO-+r!2, B+B& 
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The continuity condition on B at z = 0 allows us to match the field within the 
fluid region to a potential field within the insulating half-space (Shercliff 1965). 
The reason why all perturbations in B must decay to  zero as z --f co will be made 
clear presently. 

Major mathematical simplifications occur, because the exact solution is axially 
symmetric ( a / M  = 0 ) ,  has known radial dependence of the von KBrmBn similarity 
type (i.e. both vector fields v and B have radial and azimuthal components 
proportional to r ,  and axial component independent of r ) ,  and can be expressed 
as a power series in Rossby number E .  Expansions correct to first order in E ,  which 
embody these ideas and also non-dimensionalize the variables, are given for the 
velocity, pressure, magnetic field and electric current, in cylindrical co-ordinates 
r, 0, x ,  as (cf. Gilman & Benton): 

v(r,z,t) = rsz8+ns[rU(g, . )p+rV(c,7)  B+d,  W ( [ , T ) ~ I ,  (6) 

n(r, z, t )  = Qr2R2+ vRsQ(y, T ) ,  ( 7 )  

B(r ,  2, t )  = BOB + B,,uu( vQ)l E[rA( c, 7) P + rB( <, 7) 8 + d, C(C, 7) 21, (8) 

j ( r , z , t )  = (l/,u)Vx B = B o a R s [ ~ ~ ( ~ , . r ) B + r J ( Q ~ ) 8 - t d E ~ ( ~ , . r ) 2 1 .  (9) 

In  these expressions, d ,  = (v/Q)*, is the Ekman depth, 5 = z/d, and T = QZt. 
The particular scaling for B and j is chosen to reduce the frequency with which 
parameters occur later on. Note that the basic unperturbed state (e = 0) is 
simply the uniform rotation (i.e. uniform vorticity) and uniform collinear mag- 
netic field, with no electric currents, no hydromagnetic interaction, and pressure 
just balancing centrifugal force arising from the rotation. In what follows we 
study small departures from this state. Since j is proportional to the curl of B, 
(8) and (9) combine to give 

Thus, only radial and tangential magnetic field components correspond to 
currents; note also that the important axial component of current comes from 
an azimuthal field. 

Substitution of the expansions (6)-(8) into the fundamental equations (1)-(3), 
and neglect of terms quadratic in E ,  leads to the following two-parameter linear 
partial differential equation set: 
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It is important to note that in spite of the linearization, the full hydromagnetic 
coupling has been preserved; currents affect the flow and simultaneously the 
flow distorts the field lines. The two fundamental parameters of the problem are: 

4 
(19) 

ca, 
4 2 d H  

a = ___ = (G) B, = magnetic interaction parameter, 

(20) 
V 

6 = - = gpv = magnetic Prandtl number. 
h 

In  (19), d, is the depth of an ordinary Hartmann boundary layer, 

so 4 2  a is the ratio of Ekman to Hartmann depth. Note that this ratio is indepen- 
dent of kinematic viscosity, and that from its position in the equations 2a2 
measures the strength of the electromagnetic body force relative to the Coriolis 
force. The magnetic Prandtl number is simply the ratio of the rate of viscous to 
magnetic diffusion. For most geophysical, astrophysical or engineering situations 
of interest, v < A, so in what follows attention is restricted to the range 6 < 1; 
however, as we shall soon see, the limit 6 --f 0 is a singular one (refer to (13)-(15)), 
so this limit is only taken after the full solution has been obtained. Since the 
relative magnetic field strength can vary considerably from one physical situation 
to another we attempt to obtain solutions uniformly valid for all a. 

d, = ( P V l f l B 8 4  

The initial and boundary conditions now take the form, 

at 7 = 0 ,  U = V = W = A = B = C = O  for T > O ,  (21) 

( 2 2 )  
at C = O ,  V = 1 ,  U = W = A = B = C = O ,  
as C+co,  U , V , A , B , C + O .  

The boundary conditions on the velocity need no comment. Those on the 
magnetic field a t  6 = 0 follow, by continuity, from the required absence of any 
perturbation within the insulator (since no current flows therein, V x B and V . B, 
both vanish, and B must be bounded as 5 -+ - 00). In  the fluid, as 6 ++ co, 
the perturbation magnetic field vanishes by virtue of the differential equations; 
no other bounded solutions exist. 

Some of these conditions at 5 = 0 and 6 = 00 differ from those used in the steady 
analysis of Gilman & Benton. This point will be clarified later. For the moment, 
it  suffices to say that this apparent discrepancy involves a non-uniformity in 
the large time behaviour, which the present analysis resolves. Furthermore, the 
matter is largely academic, because the steady flow and electric current structure 
of Gilman & Benton are completely independent of the difference in these 
particular boundary conditions. 

Equations (1 1)-( 18) are eight equations for seven unknowns. Equation (15), 
being redundant, in view of ( 13) and ( 17), is disregarded. Furthermore, all variables 
of interest can be computed from U, V ,  A,  B whose equations (11)-(14) form 
a closed set. A considerable economy of notation is achieved by introducing 
complex notation for the velocity components parallel to the plates (with F 
for ‘fluid’) and similarly for the field (1M for ‘magnetic’): 

F(C, 7) = u(<, 7) + i V(C, 71, (23) 
M(C, 7) = A(C, 7) + W C ,  7). (24) 

} 
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With this notation, the problem is reduced to solving 

F", - F"+ 2iP = 2a2MC, 

SM, - MCC = FC, 
subject to 

P(0, T) = i, F(5, 0)  = M(5,O) = I;"(co, T) = M ( 0 ,  T) = M(m, T) = 0. (27) 

The terms in (25) are, respectively, the local acceleration, viscous diffusion, 
Coriolis acceleration, and electromagnetic body force. Those in (26) are unsteady 
change in the magnetic field, magnetic or resistive diffusion, and induction of 
magnetic field. 

Equations (25) and (26) can easily be combined into a single (in this case 
identical) equation for either F or Z. However, since the boundary conditions 
cannot easily be combined, this approach is not particularly fruitful. 

3. The Laplace transform solution 

defined, for example, by 
Some care must be exercised in utilizing the Laplace transform of F (or M ) ,  

P(C, s) = som e-s7lic(C, 7 )  d T ,  (28) 

because F and X are complex functions, and s is also a complex variable. Specifi- 
cally, whenever U, V ,  W,  A ,  B,  are to be extracted from or @, as, for example, 
in 

- - - - _  

g(5, s) = Re F(L4, 

J O  

then s must be treated as a real variable during the operations of taking real or 
imaginary part (Doetsch 1961). The transformed problem is now 

i 
p" - (s + 2 i )  P = - 2a2iEi', 
jp-&g = -jP, 

P(0, s)  = i5-1) P(o0, s)  = B(0, s) = B(m, s)  = 0, 

where primes denote differentiation with respect to 6. Clearly, for these linear 
equations with constant coefficients, only exponential solutions will be obtained. 
They will either grow without limit or decay to zero as 5 -+ a. This explains 
why the perturbation magnetic field actually must decay to zero as 5 +- co; the 
only other physically acceptable possibility, a bounded constant, is not a solution 
of the equations. This fact has some important consequences. 

The exact solution of (29) is: 

k(s + 2i - m2) e-kC - m(s + 2i - k2) e-5 
(k - m) s(s + 2i)4 [ (s  + 2i)% + (6s)4] ' F(y , s )  = i 
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k = [n+ (n2-q2)*]*, 
m = [n - (n2 - q2)4]*, 

n = +[( l+6)s+2a2+2i] ,  

q = (6s)*(s+2i)*, 

Re k 2 0, 

Re m 2 0, 

Re q 2 0. 

The transform of the axial velocity is: 

(k2- ma) - (s + 2i - m2) e-kc + (s + 2i - k2) e-mc 
(k - m) s(s + 244  [(s + 2i)* + (as)*] 

W ( { , S )  = R e { - 2 i  

and the real part here is taken with s oonsidered real. 
It is to be noted from (30), (31) and (36) that the flow has a double layer ex- 

ponential structure in 6. These layers are referred to as the k and m layers ; their 
physical significance will emerge shortly. In  the steady state problem of Gilman 
& Benton only a single Ekman-Hartmann layer exists. One problem then is to 
explain this seeming paradox. 

The inversion of (30), (31) and (36) requires a knowledge of the location and 
type of singularities. A careful inspection shows that in general, the only singu- 
larities are a simple pole at  s = 0 (which gives the steady state solution), and 
branch points at  s = 0 and s = - 2i.  The functions can easily be shown to have no 
singularity at  possible values of s for which k = m. Also, if the branch with 
positive real part is chosen for the square roots which occur, then clearly 
( s  + 2i)4 + (as)& does not vanish anywhere (except when 6 = 0 and s = - 2i). In  
this last case (6 = 0) ,  and generally for 6 4 1, there is an additional singularity 
at s = - 2a2 - 2i, whose effects are studied in $8 4 (iv) and 5. 

4. Laplace inversion for some limiting cases of interest 
This section is devoted to the study of some important limiting cases, for which 

exact results can be obtained. The special limits chosen here are selected to give 
overall perspective to the study. 

(i) Ordinary hydrodynamic flow (a  = 0) 

To check that the non-magnetic case is in order, set B, = 0, which implies a = 0. 
From the basic definitions (8) and (9), no field or currents then exist, and it is 
easily confirmed that 

H(5, S)I,,~ = is-leqs+2i)*c. (37) 

The inversion is conventional (see, for example, Campbell & Foster 1948, (819)): 

This formula correctly describes the growth of an ordinary linear Ekman 
boundary layer (see Greenspan 1968, where the imaginary part of F can also be 
seen plotted in figure 2.3). The important conclusion obtainable from this result 
is, that the steady Ekman layer (of thickness w (v/B)*) is approached through 
a series of inertial oscillations (at non-dimensional frequency 2)  in a non-dimen- 
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sional time of order 7 = 2 .  This rather short duration of the transient is also 
typical for the establishment of non-linear Ekman layers (e.g. Benton 1966), and 
has important implications for spin-up. 

(ii) Early time behawiour 
The early time behaviour of any of the functions in physical space is determined 
by the corresponding behaviour of the transform functions for large [ sI . This 
fact is expressible as a precise limit by one of the well-known Tauberian theorems 
(e.g. Doetsch 1961), which states that 

provided the limits exist. It is straightforward, but tedious, to regard a, 6 and 6 
as fixed, and to obtain what are in effect asymptotic expansions for T', M ,  W ,  
valid as s -+ 00. In this way it is found that 

_ -  

k * d+ (&+i) s-a+o(s-q, 

m - (as)+-- 6+aa2 8-a + O(s-%), 
1 - 6  

- -  
The corresponding results for M ,  W are omitted in the interest of brevity. 
Expansions of the type (42) can now be inverted term by term to yield a small 
time expansion for the various functions in physical space. The form of these 
expansions is of a type studied in a, non-linear, non-magnetic context by Benton 
(1966)) and in the present problem it is algebraically simpler to obtain them 
directly in physical space. The appropriate expansions are : 

U ( L 7 )  = 7[U~(r)+7U2(r)+72U3(r)+ ... I, (43) 

V ( L 7 )  = v,(r) + 7Wr) + 72V3(r) + . . * , (44) 

W(5, 7 )  = 7 m ( r )  + 7 W r )  + 72W3(71) + . . .I, (45) 

Q K 7 )  = 7[&1(r)+7Q2(r)+72&3(1;1)+...1, (46) 

A ( L 7 )  = 'TB[Al(r)+7A2(r)+72A3(r)+ ... I, (47) 

B(6, 7 )  = Tf[Bl(r) + 7B2(7) + T2B,(7) + ... I, (48) 

C(Y, 7 )  = 72[Q1(~) + 7c2(~) + (49) + ... I, 

where 

is the familiar similarity variable of viscous boundary-layer theory. If these 
formal series are substituted into (1  1)-( 18), and coefficients of like powers of 7' 
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are equated to zero, a sequential hierarchy of ordinary differential equations 
emerge, which are straightforward (but laborious) to solve. It is found, for 
example, that V,(7) = erfc 7, as in the ordinary Rayleigh problem. More generally, 
the solutions involve functions of both 7 and S*g = z /2 (A t ) t .  Consequently, an 
important deduction is, that the k layer starts off as a pure viscous diffusion 
region of thickness (vt)Q, whereas the m layer is a purely magnetic or resistive 
diffusion layer of thickness (At)*. This also follows from an inspection of (40)-(42). 

The real value of the preceding expansions, and the hierarchy of equations 
which determines the coefficient functions, is not only that they provide a 
formally exact framework for expressing the small time solution, but more- 
over that a wealth of information can be obtained about the way in which this 
complicated flow begins without extracting detailed analytical solutions. Thus, 
we spare the reader mathematical details and simply describe the sequence of 
processes which successively come into play during the early stages of flow 
development. 

Immediately following the impulse (i.e. to order 7 O  in the expansions), a simple 
Rayleigh shear layer forms in the azimuthal flow; to this order in time, it is 
unaffected by either rotation or the magnetic field; its dimensional thickness is 
of order (vt)*. Next, when the order 74 terms first become important, the applied 
axial magnetic field is tipped by the Rayleigh shear into the azimuthal direction 
(thereby generating axial and radial electric currents); this azimuthal field has 
variations on two length scales, (vt)g and (At)&. At order ~ l ,  the pressure imbalance 
arising from centripetal acceleration associated with the azimuthal flow drives 
a radial motion; simultaneously, the simple Rayleigh shear layer is altered by the 
electromagnetic body force (the radial current crossed into the axial field gives 
an azimuthal body force). The important new effects, which enter at  order 7%, 
are the generation of axial (Ekman) flow to balance the radial mass motion, 
and a radial field (or tangential current), induced by radial velocity tipping the 
axial magnetic field. Finally, at times of order -T~, the axial velocity stretches the 
imposed field lines, thereby increasing B,. 

The convergence of this type of series is known to be rapid in the non-magnetic 
case (Benton 1966), but presumably it cannot reveal much about inertial oscilla- 
tions, and is also laborious to calculate; this approach will not be pursued further. 

(iii) The steady-state solution and its approach 

Whereas the early time development is governed by large 181, the final large time 
behaviour arises from regions of the complex plane near s = 0. If the steady-state 
limit exists, then it is given by (Doetsch 1961): 

P(5, 00) = IimsP(5, s). 
s-0 

Equations (32)-(35) show that as s + 0 then n -+ a2 + i, q -+ 0, so 

Ic+(2a2+2i)t=p+iy, m - t o ,  

where P(a) = [(i +a4)*+az]i, = [(I + ~ ~ 4 ) 4 ) t - ~ 2 ] 4  = p-1. 
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The notation in (51) and (52) is identical to that used in Gilman & Benton. 
In  particular, P(0) = y(0) = 1, while for large a, 

Note that, since m -+ 0, the thickness of the m layer tends to in$nity as time tends 
to inJinity. This is precisely the non-uniformity which gives the steady-state 
solution a single layer structure whereas, at  all finite times, the unsteady problem 
clearly has a double-layer structure. The reason is simply that, whereas the 
k layer remains of bounded thickness for all time, the m layer continues diffusing 
out to spatial infinity, becoming more nearly spatially uniform as it does so. 
The steady-state solutions are: 

(53) F( 6, m) = i e--(fl+W 5, 

which are independent of 6, as in Gilman & Benton. (The reason is that 6 enters 
only as a multiplier of an unsteady term; see (26).) It now follows that 

U([, m) = e-flc sin yg, 

P( [, 00) = e-86 cos rf 

1 
B(C,m) = - - [P - e-p5(P cos yg- y sin 75)]. P2 + Y2 (59) 

If it is noticed that the present Rossby number differs in sign from that intro- 
duced by Gilman & Benton, then it is readily verified that the steady velocity 
field and electric current here agree exactly with theirs, This shows, as stated 
previously in Q 2, that the fundamental fields are insensitive to some boundary 
conditions. Actually, the radial magnetic field differs by a constant from the value 
in Gilman & Benton. More importantly (58) and (59) show that neither A nor B 
decay to zero as 6 + 00. This is, again, evidence of the non-uniform approach to 
the steady-state, the order of taking limits (7 -+ co, (; -+ 03) being crucial, These 
non-decaying constants are directly traceable to the quantity 1 in the square 
bracket of (54), which is the m-layer term. In  effect, non-zero values of A ,  B 
exist throughout the m layer; when that layer diffuses all the way out to spatial 
infinity, as it must do in order for the steady state to be approached, it carries 
these non-decaying values with it, thereby changing some boundary conditions 
at  infinity. The appropriate order for taking these limits, which preserves all the 
boundary conditions imposed in (22), is g -+ a, 7 -+ m, rather than the reverse. 
In  the problem of ultimate interest, the fluid will, of course, be confined to 
a finite spatial region between two plates, and the spin-up will take place within 
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a finite time; the non-uniform limit of 5 and r, both tending to infinity, thus 
loses relevance. 

When the results in Gilman & Benton are now brought to bear, we can sum- 
marize the ultimate state, to which the present flow evolves, as consisting of a 
single Ekman-Hartmann boundary layer near the plate, whose important 
features are an Ekman suction outside the layer reduced from the classical non- 
magnetic value, and simultaneously an induced axial electric current (the 
Hartmann current), which persists unabated to spatial infinity. The thickness 
of the layer is clearly of order d E / p ;  hence, for a = 0, we have an Ekman layer, 
while for large a, we obtain (since p N d E / d H )  a Hartmann layer (which is thinner 
than the Ekman layer). Henceforth, the k layer is referred to by the more reveal- 
ing name of Ekman-Hartmann boundary layer. It is clearly one fundamental 
type of structure in hydromagnetic spin-up problems. The fact that its growth, 
initially by viscous diffusion, eventually slows down and reaches an asymptotic 
bounded steady state is due to the balancing effect, not of convection as in 
ordinary boundary layers, but rather to the distortion of vortex lines and 
magnetic field lines in the region exterior to it. Similar reasoning (which follows) 
also explains why them layer continues to diffuse without limit. The fundamental 
transform solutions (30), (31) and (36) show that at any large finite time (non- 
zero s), the state of affairs outside the m layer (when it is still of finite but large 
thickness) consists only of an Ekman suction velocity. There is, consequently, 
no distortion of either vortex or magnetic field lines there (in particular the 
axial Hartmann electric current immediately outside the Ekman-Hartmann 
layer must eventually turn completely into the radial direction within the m 
layer, since it falls to zero outside the m layer ; this is an important consequence 
of the fact that all magnetic field perturbations vanish as 5 --f 00 when r is finite). 
Consequently, there is no force outside the m layer to balance its magnetic diffu- 
sion; it grows in thickness without limit. 

(iv) Transient dynamics i n  the limit of vanishing 
magnetic Prundtl number (S = 0)  

For the physical systems of interest (earth, sun, laboratory fluids) the magnetic 
Prandtl number S is much smaller than one. In  this section, the exact inversions 
are found for the limit 6 -+ 0, but it must be emphasized at  the outset that this 
limit is a singular one ((26) shows that since S multiplies the time derivative term, 
it produces a temporal singular perturbation). The non-uniformity is clarified 
by the approximate analysis of 6 5, which examines the situation when 0 < S < 1. 
In  essence, the case S = Oreveals the transient dynamics ofthe Ekman-Hartmann 
layer (the k layer), but nothing is learned about the m layer in this limit. 

Letting S tend to zero in (32) to (35) shows that 

whence 
n -+ +(s + 2a2 + Z i ) ,  

k --f (s + 2a2 + 2i)t, 
q + 0, 
m -+ 0. 

The fact that m + 0 explains why the m layer dynamics are suppressed in the 
limit S .+ 0; the layer loses its structure in this limit, just as it does in the limit 
r -+ 00 for S $. 0. Another way of saying this is, when S = 0, immediately following 
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the impulse, the m layer diffuses instantaneously out to infinity and becomes 
spatially uniform; what remains is the important Ekman-Hartmann layer. Its 
detailed time dependent development is found by substituting (60) into (30), (31) 
and (36), which gives 

F(<, 8) I 6=o = is-1 e-L+2a'+W* 5, 

D(6, s)16=o = - is-l(s + 2a2+ 2i1-9 [ I -  e-(s+2a8+2i)*c], 

p(6, s)16=o = Re{ - 2is-l(s + 2a2 + 2i)-* [l - e-(s+2aa+2i)*5 I>* 

(61) 

(62) 

(63) 

Note that, in this limit, as previously mentioned, there is a branch point at 
8 = - 2 9 -  2 i .  Since the quantity in the braces in (63) differs only by a factor 2 
from the expression for D, we list the inversions of (61) and (62) only, which 
are (Campbell & Foster (546), (819) and (825)): 

(65) 

It may help the reader in what follows to point out that, despite its complexity, 
(64) is very much like the corresponding non-magnetic result in (38). (Compare, 
(37) and (66).) 

The small time behaviour of (64) and (65) is of the type described by the series 
(43)-(49). To see this substitute that 6 = 2717 into (64) and (65), treat 7 as fixed 
and expand the various functions in powers of 74. The resulting coefficients will, 
in the present case (8 = 0) ,  be functions only of 7,  which is the fundamental 
similarity variable for the Ekman-Hartmann layer and, of course, a; there is no 
dependence on 847, which is the m-layer variable. The large time behaviour is 
found by using the asymptotic expansion for the complementary and ordinary 
error functions. The results can be written as 

1. (67) 
i - e-?i-(2az+2i)7 + O(r-# e-(2a2+2i)~ 

nt( 2a2 + 24 r1 

These formulae are not difficult to interpret and contain some important results. 
In particular, in each expression the terms independent of T (which are what the 
expansions reduce to when 7 -+ a) agree with the steady-state solutions of (53) 
and (54). Consequently, to dominant order, the large time behaviour is, as 
expected, the steady Ekman-Hartmann boundary layer already described (it is 
unaffected by the value of 6). The ultimate approach to this state is dominated by 
a relatively thick diffusively growing region (of thickness (vt)*), in which small 



Spin-up of a conductingJluid. Part 1 573 

inertial oscillations are present. For non-zero magnetic interaction parameter a, 
these inertial oscillations are exponentially damped in time (by basically the 
same mechanism that inhibits radial pumping and Ekman suction velocity, 
i.e. Maxwell tension in the applied field). In  the non-magnetic case (a  = 0) ,  
(66) coincides with the asymptotic expansion of (38), and then the inertial 
oscillations are only algebraically damped in time. Notice that, even though the 
hydromagnetic interaction produces an exponential decay in the amplitude of 
these oscillations, it does not affect the thickness of the layer in which they exist. 
All of this pertains only to the region within the Ekman-Hartmann layer. It will 
subsequently be found that inertial oscillations in the generally much thicker 
m layer are far more persistent in time. 

Without question the most important features of the Ekman-Hartmann layer 
are the Ekman suction velocity and Hartmann electric current induced im- 
mediately outside. Since, in the limit 6 + 0,  the m layer is spatially uniform 

1.0 

0.5 

0 

7 = at 
FIGURE 1. Normalized Ekman suction velocity at edge of Ekman-Hartmann boundary 
layer as a function of non-dimensional time for several values of magnetic interaction 
parameter. 

and infinitely thick, the subsequent limit 6-+ 03 will represent a point still 
within the m layer, but outside the Ekman-Hartmann layer (in $ 5 ,  we will 
examine these quantities outside both the E and m layers, in which case must 
tend to infinity first). Denoting by subscript 1 values at  the outer edge of the 
Ekman-Hartmann layer, we find, utilizing (6), (9), (lo), (24), (62), (63): 

[W1(s) + iK1(s)]s=O = - 2is-y.S + 2012 + 2i) -4; 

[K(T) + iK1(7)]s=0 = - 2i(p + iy)-l erf [(p+ iy) 741. 

(68) 

and the inversion (Campbell & Foster (546)) is: 

(69) 
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Since the real and imaginary parts of this expression are both negative, we see 
that, when the boundary has been spun up (E > 0) and B, > 0, both the axial 
velocity and axial current flow into the Ekman-Hartmann layer (i.e. towards 
the boundary). Equation (69) also reveals again the basically diffusive nature of 
the Ekman-Hartmann layer, and the presence of inertial oscillations. A new 
piece of information obtainable from (69) is the total transielit time 7, for the 
development of the Ekman-Hartmann layer and its dynamically important 
Ekman auction and Hartmann current. Apart from the oscillationa, which may 

" 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

7 = nt 
FIGURE 2. Normalized Hartmann electric current at  edge of Ekman-Hartmann boundary 
layer as a function of a non-dimensional time for several values of magnetic interaction 
parameter. 

persist longer, the error function will have approached its asymptotic value 
of 1 when the magnitude of its complex argument is about 2. Consequently, 

7, = 4(p2+72)--1= 2(1+a4)-+. (70) 

For 01 = 0, this reduces properly to the value 70 = 2 appropriate to the establish- 
ment of an ordinary Ekman boundary layer; as the magnetic field increases, 
the Ekman-Hartmann layer develops even more rapidly (this result is, again, of 
decisive importance for spin-up) . 

The real and imaginary parts of (69) are plotted in figures 1 and 2 so that the 
detailed development of Ekman suction, Hartmann current, and inertial oscilla- 
tions can be visualized. In  these figures, the functions are normalized exactly as 
in Gilman & Benton (figure 5), i.e. Ekman suction and Hartmann current are 
divided by their steady-state values in the Ekman limit of a -+ 0 and Hartmann 
limit of a --f co, respectively. Figure 1 shows that, apart from inertial oscillations, 
the Ekman suction is always less than the classical non-magnetic value. 
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5. The case of small finite magnetic Prandtl number (0 c 6 < 1) 

The analysis of the preceding $ 4  (iv), which is exact, has revealed the transient 
dynamics for the limiting case 6 = 0. In  that relatively simple limit, the flow 
consists of only two regions, a transient Ekman-Hartmann boundary layer (the 
k layer) and the spatially and temporally uniform region beyond it (the m layer). 
Attention is now turned to the more realistic (but less tractable) situation in 
which the magnetic Prandtl number 6, while still very much smaller than 1 (from 
physical considerations), is nonetheless greater than zero. In what follows, the 
plate is regarded as horizontal with the fluid lying above it. 

The most obvious overall difference between the flow when 6 = 0 and that for 
6 > 0 is that, in the latter case, the m layer will have a finite thickness at any 
finite time after the impulsive start; thus, there must be a third region of the 
flow, that beyond both k and m layers. This outermost region is called the current- 
free region, for reasons to be seen soon. The main concern of this section is to 
investigate the dynamics of the m layer and the current-free region. The exact 
transform solutions are mathematically intractable, so an approximate treat- 
ment will have to suffice. The desired goal is to find suitable approximate versions 
of P ,  g ,  which are valid on a legitimate inversion contour, and which are more 
tractable than the full expressions. 

The generalized study of the initial transient processes ( §  4 (ii)) has shown that 
for r > 0, both k and m layers are present and the initial thicknesses are of order 
(vt)t and (At)* ,  respectively. Consequently, if S Q 1 as we have assumed, then the 
m layer is initially much thicker than the k layer. As time proceeds ( 3  4 (iii)), 
both layers continue to grow, but the k layer growth eventually stops, whereas 
the m layer growth does not. Obviously, then, for the case of interest, the m layer 
is always much thicker than the k layer, so it should be relatively inviscid. The 
basis for an approximation valid within the m layer could now be the inviscid 
approximation to m itself, which is easily found from the inviscid version of (29) 
to be 

Since this expression reduces to (as)*, and zero as s tends to infinity and zero, 
exactly as the full expression for m does, there is hope for the belief that a t  least 
the correct early and late time behaviour are preserved in this approximation. 
With an inviscid form for the m layer, we could now, in principle, seek a uniformly 
valid approximation for the transform functions by the method of matched 
asymptotic expansions; however, matching in the complex 8-plane is expected 
to involve subtle difficulties. Instead, a more direct, formal approach is adopted, 
which cannot be rigorously justified, but which does reduce properly to the exact 
cases studied above, and gives sensible results. (A method similar in spirit has 
been used with success by Greenspan & Howard in treating non-magnetic flow 
between two plates.) 

Delaying the question of validity until later, we obtain the approximation 
formally by regarding 6 as a small parameter compared to everything else; when 
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the full expressions for k ,  m (32) - (35)  are expanded in powers of S4, it  is found 
that 

k = (s + 2a2 + 2i)t  [I + q51(S) + O(S2)] = ko[l+ $1 + 0(62)], 1 

where 

(72) 1 m = [ 6s(s + 2 i )  ]& [l -$I(&) + 0(62)] = m,[l - q51+ 0(S2) ] ,  s+2a2+2i 

Sa2s 
= ( s + 7 + 2 i ) 2 '  (73) 

These expansions are now substituted into the exponential and coefficient parts, 
separately, of (30) and (31), and the coefficient functions are expanded in powers 
of 84. When terms only through order Si are retained, the resulting expressions 
can be written as - 

P(c,s) A is-l[e-koc-q5a(S) ( e - k o c - e - m o l ) ] ,  (74) 

(75) B(c, S )  A is-l(s + 2a2+ 2 i )+  [ I -  q52(~)1 (e-koc - e-moc) ,  

where 
2SQa2d 

$US) = (s + 2i)Q (8 + 2a2 + 2i). 
Even though the completely formal procedure used to generate these expres- 

sions has no a priori justification, the resulting formulae appear to constitute 
a useful approximation with a considerable domain of validity. To begin with, 
notice that, from (72), the terms k,, mo are such that their product is 
(as)$ (s + 2 i ) i  = q, exactly as is the product of the full k, nz. More importantly, 
m, is just the inviscid approximation (71). Furthermore, the approximate func- 
tions in (74) and (75) are such that the imposed boundary conditions (at both 
c = 0 and t; = co) are satisfied exactly, as is the initial condition. Also, these 
functions tend to precisely the same steady state as the exact functions (5 4 (iii)). 
Finally, both ordinary hydrodynamic flow (a = 0) ,  and the zero magnetic Prandtl 
number case (6 = 0) ,  are recovered from (74) and (75), when a -+ 0 and 6 .+ 0, 
respectively. 

To delineate those regions of physical and parameter space (if any) where the 
approximations are not valid, it is necessary to ask whether an appropriate 
contour for the inversion integrals exists, everywhere on which (74) and (75) are 
close in some sense to the exact transform functions. If a contour can be found, 
on which both dl(6) and are of small magnitude compared to 1, then 
presumably the truncated expansions (74) and (75) should be valid approxima- 
tions. Showing that such contours exist is made somewhat easy by the following 
fortunate features of the 'expansion parameters' $l,q52: apart from the fact that 
they both vanish when 6 -+ 0, they are also zero in the limits, s -+ 0, s + co and 
a2 -+ 0 (q51, but not q52 tends to zero as well when a2 -+ co). Only when s .+ - Zi, or 
- 2a2 - 2i, do diverge, so clearly the contour must avoid these singu- 
larities by some, as yet unknown, amount. The immediate suspicion is that the 
approximations may not be adequate for describing the inertial oscillations, but 
should be legitimate for everything else. 

With the given singularities at  s = 0, - 2i, - 2aa - 2i ,  the fundamental contour 
is a vertical straight line anywhere in the right half-plane. If all branch cuts are 
drawn horizontally to the left, then the basic contour can be deformed into the 

or 
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path shown in figure 3. As in Greenspan & Howard, the rays approaching 
infinity guarantee exponentially rapid convergence of the inversion integrals 
for large ( s  I ; since I q511, I q521 are moreover small in that limit, clearly the early time 
behaviour is quite adequately described by (74) and (75). The limit of validity for 
the large time behaviour is governed (in inverse manner) by the extent to which 
the contour must indent into the right half-plane. Since q51, q52 --f 0 as s -+ 0, the 
circular arc near the origin in figure 3 need only have infinitesimal radius. In  fact, 

Im s 

FIGURE 3. Contour for the inversion integrals. 

only in the immediate neighbourhood of s = - 2i must a finite positive real part 
for s be tolerated. Detailed examination of q51, g52 for s near - 2i shows that the 
sensitive situation occurs if Is+ 2 i J  < O(6).  Then the approximation is not valid 
(in so far as the inertial oscillations are concerned) for 7 2 O(S-l). Generally, the 
approximation appears to be uniformly valid for all space, all a and 

0 Q 7 < O(S-1). 

(Since S < 1, the limitation in time does not exclude many of the transient 
processes of interest.) 

While (74) and (75) are not yet exactly invertible, the dominant behaviour 
of the non-zero 6 case can be extracted. In  particular, suppose the k layer terms 
of (74) are grouped together (i.e. those involving exp - k o { ) .  Then it is apparent 
that the leading term independent of 6 is the same as (61) (so its inversion is ( 6 4 ) ) ,  
but the next contribution involves S* only as a proportionality. (Similar remarks 
cannot be made about the m-layer terms, because mo itself depends upon 6.) 
If (74) and (75) were inverted exactly, then it would be found that, for finite 

37 Fluid Mech. 39 



578 E .  R.  Benton and D. E .  Loper 

non-zero 6, the basic (6 = 0) Ic-layer dynamics undergo only a small correction 
of order 66, no matter how large a. (Also, the thickness of that layer remains 
unaffected to order 64.) Consequently, the formula (64) should serve to describe 
adequately the growing Ekman-Hartmann layer in most physical situations 
where 6 < 1. 

The more interesting aspect of (74) is the term, which gives the m-layer 
dvnamics : 

Because 5 occurs only in combination with 63, and because a is independent of 
viscosity, we see that, as suggested previously, the m layer is basically inviscid, 
depending instead only on the resistivity. Henceforth, it is referred to as the 
magnetic diffusion region; since it grows in thickness without limit, it would be 
misleading to call it  a magnetic boundary layer. 

Now (77) is a valid approximation' for all a provided the contour does not 
approach to within order 6 of the singular point s = - 2 i .  It can therefore be 
further simplified for the two cases of interest, 6 < 2a2 6 1 and 2a2 $ 1, either 
by ignoring 2a2 compared with s + 2i, or vice versa. (Roughly speaking, these 
cases correspond to 2a27 < 1 and 2a2r B 1, respectively.) For the former case, 
(77)  becomes: 

and the inversion is (Campbell & Foster (529), (807) and convolution): 

In  the interests of brevity, the asymptotics of this integral will not be presented. 
Its main features are evident by inspection. When 2a2 < 1, the magnetic diffusion 
region depends in a characteristically exponential fashion on the square of a 
magnetic diffusion variable rim = 845/2d = z/2(ht)*. The region diffuses para- 
bolically with time at  the resistive rate. Within the layer, there are inertial 
oscillations and weak horizontal velocities of order &*a2. 

From the definition of a, (19), the case 2a2 >> 1 arises when the imposed 
magnetic field is strong and/or the rotation slow. In  this situation the Alfvhn 
mechanism can be anticipated to be important. Equation (77) reduces to: 

and the inversion is (Campbell I% Foster (861)): 

Substitution of the fundamental definitions shows that the argument of the 
Bessel function here is indeed constant on surfaces which propagate with 
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(dimensional) speed B,/(pp)i, the Alfvkn speed. The front is sharp, but the ‘tail’ 
behind it displays a complicated oscillatory profile induced by rotation. The 
amplitude of the front (and the horizontal velocities within the magnetic 
diffusion region) are small, of order S4, and this agrees with the non-rotating 
result (Shercliff 1965), being due to the fact that we have an insulating 
boundary, mechanically excited. (A stronger Alfv6n front would be generated 
if the boundary were a conductor, or if the impulsive excitation were 
electrical.) 

Without delving directly any further into the dynamics of the magnetic 
diffusion region, we turn now to the current-free region beyond it. In  many ways, 
this region is as interesting and important for spin-up as the m layer itself. To 
investigate the state of affairs outside both k and m layers, we regard 6 as small 
but non-zero, and let 5 tend to infinity. Performing this operation directly on the 
exact transform solutions (30), (31) and (36) shows that B and vanish, while 
F tends  to 

F2(s) = limW(5,s) = Re -2i 
k + m  

6-m { s(s + 2i)’t [(s + 2i)i + (SS)+] 
Consequently, as mentioned previously, all electric currents, and the horizontal 
components of perturbation velocity, vanish outside the magnetic diffusion 
region; only an Ekman suction velocity remains. 

Equation (81) cannot be simply inverted for general values of S but, since S can 
be arbitrarily small, we are tempted to examine the subsequent limit 6 --f 0. The 
simplified expression obtained in this way is: 

and the inversion (Campbell & Poster (549)) is: 

@(T)]~-+~ = Re{- (P+iy)erf [ ( P + i y ) d ] f  2 k ~ e - ~ ~ ~ e r f  [(2a27)*]). (83) 

The second term in the curly bracket here is an inertial oscillation (with fluid 
columns oscillating purely vertically), which does not damp out as time increases. 
Even though neither viscosity nor resistivity are operative in this outer most 
region, oscillations in vertical velocity must clearly be strongly linked to similar 
motions in the magnetic diffusion region, where damping does take place. This 
result must therefore be regarded suspiciously. A closer inspection shows that the 
non-decaying nature of this term is a result of taking the limit S+ 0; this changes 
the branch point at  s = - 2i in the denominator of (81) into a simple pole (evident 
in (82)). A careful asymptotic analysis valid for small non-zero 8, which is 
sketched in an appendix, shows that this oscillation does in fact damp out. (It 
damps out very slowly, however; this point is returned to below.) Furthermore, 
the first term in (83) is found to be accurate. As a result, for sufficiently large time, 
the Ekman suction velocity in the outer region is: 

lim W2(7) = -P. 
7-+W 

(84) 

37-2 
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When it is recalled (52) that for all non-zero a, p is greater than 1, then (84) shows 
that the Ekman suction velocity outside of both dissipative layers is enhanced 
compared with the classical non-magnetic value. In contrast, the value at  the outer 
edge of the Ekman-Hartmann layer, which lies beneath the magnetic diffusion 
region, is smaller than the classical value (see (69)). This seemingly curious con- 
clusion is actually one of the most fascinating and significant to emerge; its 
explanation relies on a partial summary of some of our previous results. 

Let us restrict attention to non-dimensional times greater than of order 2 and, 
of course, 0 < S < 1 ; then the Ekman-Hartmann layer has become quasi-steady, 
and the magnetic diffusion region is much thicker and continually diffusing. 
At  the outer edge (5 x p-l) of the Ekman-Hartmann layer, the circumferentia1 
perturbation velocity has fallen to order 84, and there is an axial Ekman suction 
towards the boundary reduced from the non-magnetic value, and a significant 
axial Hartmann electric current in the same sense (if B, > 0) .  The electric current 
flowing out of the magnetic diffusion region everywhere at  the bottom must, by 
continuity, eventually turn entirely into the radial direction within that region, 
since no electric current flows into it from outside. This radially inward perturba- 
tion electric current interacts with the impressed axial magnetic field to produce 
an accelerating positive azimuthal body force in the magnetic diffusion region. 
This explains the origin of the positive perturbation swirl velocity of order 8h 
that has been seen to exist within the m layer. Unbalanced centrifugal force 
arising therefrom will (as in the ordinary Ekman layer) drive a weak radial out- 
flow which is compensated by extra axial velocity flowing into the layer. This 
self-consistent picture is illustrated schematically in figure 4, which is a meridian 
projection of the lines which are tangent to the velocity field (solid curves) and 
electric current (dashed curves). In effect the Ekman-Hartmann boundary layer 
accommodates the impressed boundary conditions on velocity to the outer flow, 
while the magnetic diffusion region arises to form the necessary transition for the 
electric current, which the Ekman-Hartmann layer induces at  its outer edge. 

It but remains to discuss the highly persistent inertial oscillations in the 
current-free region. A careful asymptotic analysis (see appendix) valid for small 
S and large r shows that - 

64oI a 
W2(r) N -p+-+--- (cos 27 + sin 27). 

(27r7)j (2nSr)t 

Consequently, the monotonic part of the steady state is approached fairly 
quickly (when r $ &a2) but the inertial oscillations damp out only at  very large 
times (r a2/S). It is of interest to remark that inertial oscillations in Greenspan 
& Howard’s problem (with viscosity as the only dissipative mechanism) damp 
as r-4; the extra factor 8-4 here is undoubtedly a reflexion of the fact that the 
present damping occurs in a less effective resistive region, whose thickness is 
of order 8-4 thicker than the viscous region. Since the amplitude of this inertial 
oscillation is proportional to a for large a, and vanishes when a: does, these oscilla- 
tions are presumably of hydromagnetic origin. This can be shown clearly by 
combining the inviscid version of ( 11)-( 16) into a single equation for the Ekman 
suction, which is W,, + 4 W = - 8a2B - 4a2Ar, (86) 
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where a constant of integration (more precisely a function of time) has been 
omitted. Naturally, a completely consistent solution of (86) can be obtained only 
by simultaneously solving for A and B. However, since the gross properties of 
the exact solution are now known, we can, conceptually, treat the right-hand 
side of (86) as a given forcing function and infer qualitatively the behaviour of W .  
In  the current-free region, since both A and B vanish (always), there is no direct 
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FIGURE 4. -, Schematic meridional topology of lines tangent to velocity 
field; electric current. 

forcing, and the only possibility for W is undamped free inertial oscillations at 
frequency 2Q. However, (86) ought to be a reasonable approximation within the 
magnetic diffusion region as well, because only the viscous contributions to it 
have been neglected. For large time, when the term A,  is presumably small com- 
pared with B, we see that inertial oscillations can be driven by the Hartmann 
current function B, which has some non-zero average value throughout the 
magnetic diffusion region. Axial motions so forced can be expected to persist 
out into the current-free region, and in essence to be damped by resistivity within 
the magnetic diffusion region. 

6. Summary 
The concern herein has been to understand the impulsively started transient 

approach to a linear, steady Ekman-Hartmann boundary layer on an infinite, 
flat, insulating plate in the presence of an imposed, uniform, axial, magnetic 
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field. The plate angular velocity is considered to be increased from Q to Q( 1 + E ) ,  

and 8 < 1. 
The solution of this problem is dependent on two non-dimensional parameters: 

the magnetic Prandtl number 6, which is the ratio of viscous to magnetic diffu- 
sivity and the hydromagnetic interaction parameter a, which measures the 
strength of the electromagnetic body force (j x B.) relative to the Coriolis force. 
A t  all finite times after the impulse, and for non-zero but small 8, and non-zero a,  
the flow is found to consist of three distinct regions whose features are sum- 
marized as follows: 

(i) Immediately adjacent to the boundary there is an Ekman-Hartmann 
boundary layer, which acts as a transition region for the change in velocity field 
required by the boundary conditions. It is the only region of the flow in which 
viscosity is crucial, but resistivity also acts therein. This layer begins growing 
like (vt):, and approaches the steady profile described by Gilman & Benton (1968) 
in a dimensional time of order 2( 1 + a4)-) Q-l. The steady thickness is 

I( 1 + "4)) - a214 @/a)*, 
which lies between that of the classical Ekman layer, (v /Q) t  (which is precisely 
what the flow reduces to when a = 0 ) ,  and the smaller value appropriate to the 
pure Hartmann layer, which is (ppvh)*/B, (achieved when a B 1). The significant 
features of this Ekman-Hartmann layer are that the efficiency of Ekman radial 
pumping is reduced by hydromagnetic interaction; therefore the Ekman suction 
is inhibited compared with the non-magnetic value, and simultaneously the 
imposed shear results in the inducement of an axial electric current, which flows 
into the layer if B, > 0. Inertial oscillations at  frequency 2Q within this layer 
damp out rapidly in time (as exp ( - 2a2Q2t)) because of the Maxwell tension in 
the imposed magnetic field. 

(ii) If the plate boundary is taken as horizontal with the fluid lying over it, 
t,hen immediately above the Ekman-Hartmann layer is an inviscid magnetic 
diffusion region. This region arises to satisfy the exterior boundary conditions 
on electric current, which the Ekman-Hartmann layer is incapable of doing. 
For a2 < 1 it continuously grows parabolically in time by resistive diffusion, 
ultimately becoming infinitely thick and spatially uniform. At all times, it is 
much thicker than the Ekman-Hartmann layer. The Hartmann electric current 
leaving the magnetic diffusion region at  the bottom is supplied by radial currents 
within; these in turn couple with the impressed axial field to produce an ac- 
celerating tangential electromagnetic body force, which acts to spin up very 
slightly (to order &ha2) the fluid in the magnetic diffusion region. The excess 
centrifugal forces so produced lead to a weak radial outflow in this region, which 
is then supplied by an increased axial inflow from the current-free region beyond. 
Small inertial oscillations in the magnetic diffusion region are damped slowly by 
electric resistivity. When a2 $ 1, the outer edge of the magnetic diffusion region 
no longer simply diffuses away from the plate, but instead becomes a weak 
Alfv6n front (of strength a$), and the tail is strongly modified by the fluid rotation. 

(iii) In  the current-free region adjacent to spatial infinity, the only non-zero 
perturbation is the Ekman suction velocity discussed above whose value is 
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ultimately greater (by a factor [( 1 + a4)3 + a2]*) than in the non-magnetic case. 
Completely undamped inertial oscillations in this Ekman suction constitute an 
exact mathematical solution to the inviscid equations in this region; but the 
actual state of affairs is that oscillations are driven hydromagnetically by similar 
but more complex motions within the magnetic diffusion region and these do 
damp out with time (but very slowly, as a(SQt)-h). 

The most important features for spin-up (which is treated in part 2 of this paper) 
are the conditions on axial velocity and axial current at the outer edge of the 
Ekman-Hartmann boundary layer and the outer edge of the magnetic diffusion 
region. For the former, Ekman suction is reduced (relative to non-conducting 
flow), but a Hartmann current is induced; for the latter, Ekman suction is en- 
hanced and Hartmann current reduced (to zero). In  part 2, we show that two 
different hydromagnetic spin-up mechanisms exist (both of which give the same 
rapid spin-up time), because of these two possibilities. In  one, .the spin-up is due 
entirely to the hydromagnetically enhanced Ekman suction, for the other, 
spin-up occurs, partly because of an electromagnetic body force arising from the 
Hartmann current. 
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Appendix. Asymptotic analysis of the Ekman suction velocity outside 
the magnetic diffusion region 

The purpose of this appendix is to examine carefully the large time asymptotic 
behaviour of the Ekman suction velocity in the current-free region. In particular, 
we wish to show that the inertial oscillations do indeed damp out if the magnetic 
Prandtl number is non-zero. 

The starting point is (81)) which states that 

k + m  rz(s) = Re -2i  { s(s + 2i)t [(s + 27* + (Ss)*] 
Our interest is in the large time behaviour of the inverse transform when S is 
small but non-zero. First, the numerator and denominator are multiplied by Ic, 
and the exact relationship (from (32)-( 35))) km = 4 = (as)* (s + 2i)*, is substituted. 
With some further algebraic manipulation, (A 1 )  can be brought without approxi- 
mation into the form, 
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- 2i 
W2,(S) = -- ks ’ where 

2i( k2 - s - 2i) 
ks[( 1 -S) s + Zi)] ) w22(s) = - 

- ZiSb(k2- s - 2 i )  
wB(s) = + k d ( s  + 2i) t  [( 1 - 6)  s + 2i] ’ 

We now introduce the approximation (72), k ko = (s + 2a2 + 2i)t. For this to 
be valid, < I, which it is unless both 2a2 = O(6) and T 2 O(6-l). In  order to  
ensure validity for large time, we restrict interest, in this appendix, to values 
of a such that 2a2 6 (and of course 6 < 1) .  The other possible case (2a2 < 6)  is 
not of interest, because the oscillations will then be miniscule (their amplitude 
is proportional to a. 

With the above inequalities in mind, the inversions for W,, and W2, can then 
be expressed as (Campbell & Foster (210)) ( 5 4 6 ) ) :  

Integration by parts in (A 7) leads to: 

2a2( 1 - S)+ exp ( - :s7) erf [ (2012- c6) 2is  +r+ ] 
KA7) = pay 1 - 6)  - 2;s-Ja 

2a2 
-- erf [(B + iy) 7-9. 

P+iY 
With k A k,, the expression for v23 becomes 

4isga2 1 

st(8 + 2;): (8 + 2a2 + 2i)i 
F2&) = ~ 1-6 

and the inversion is (Campbell & Foster (546) ,  (555) and convolution): 

where 
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The only appfoximation used to obtain (A12) is the replacement of k by 
k, = (s + 2a2 + 2i)4. The first term here is, as stated in the main text, identioal 
to the first term in (83)) which gives the dominant long term monotonic be- 
haviour. The other terms in (A 12) are the inertial oscillations. The integral can 
be written as 

w = 1;(7) + 1 2 w  + 1 3 ( 7 ) ,  

The first integral here, when interpreted as a Laplace transform (Campbell & 
Foster (557)) is given by i( 1 - 6)/26*. For &(T), 5 is large along the entire path of 
integration, so the asymptotic expansion of J, is used, which gives the following 
to dominant order : 

Inspection of I3 shows it to be of order 1/a%), and therefore negligible compared 
with I2 (since a2 $ 6 ) ;  it  will not be computed. Combination of terms gives 

l+ i  

Neglecting the terms involving 2iS/( 1 - 6) compared with 2a2 leads finally to  

a! 
(cos 27 + sin 27). 

6 h  K(7) N -/3+-+- (2777)a (277677)) 
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